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Abstract. Fission-fragment properties have been calculated for thermal neutron-induced fission on
a 239Pu target, using constrained Hartree-Fock-Bogoliubov calculations with a finite-range effective
interaction. A quantitative criterion based on the interaction energy between the nascent fragments
is introduced to define the scission configurations. The validity of this criterion is benchmarked
against experimental measurements of the kinetic energies and of multiplicities of neutrons emitted
by the fragments.
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INTRODUCTION

The description of fission as a quantum many-body problem is simultaneously the most
promising and the most difficult path toward a predictive theory of this phenomenon.
A full treatment of all possible many-body configurations of the fissioning system is
computationally unfeasible and, in many cases, unnecessary. In practice, it is known that
the nucleus in its lowest-energy state is well described by a single Slater determinant.
Thus, mean-field approaches such as the Hartree-Fock Bogoliubov (HFB) theory have
been extremely successful in describing the fission process [1, 2, 3, 4].

A microscopic fission-theory program is being developed at the Lawrence Livermore
National Laboratory which describes the fissioning system in terms of its constituent
protons, neutrons, and the effective (i.e., in-medium) interaction between nucleons.
This approach is based on the highly successful program developed at the Bruyères-le-
Châtel laboratory over the last three decades [1, 3, 4], and provides a fully microscopic,
quantum-mechanical, dynamical, and self-consistent description of fission. The only
phenomenological input to the method is the effective interaction between nucleons,
and the D1S finite-range interaction [6] has been used in this work.

In the first phase of the program, devoted to the static aspects of fission, we have
focused on the definition and analysis of scission configurations, where the nucleus
divides into (typically two) distinct fragments. The HFB formalism is the main tool used
in this analysis. Static HFB calculations can be performed for specific configurations of
the nucleus through the use of constraints on various collective “coordinates” of the
nucleus (e.g., quadrupole/octupole/hexadecapole moments, number of particles in the
neck, separation distance between fragments). Among these configurations, some will
correspond to a single whole nucleus, while others will describe two distinct fragments.
In this work, we will be interested in the boundary between these two regions in
configuration space, and the properties of the nascent fragments (shape, kinetic and
excitation energies) that can be extracted from the calculations.



THEORY

Detailed descriptions of the HFB formalism with constraints can be found in the litera-
ture [6, 7]. Here, we only recall the salient point of the theory. The lowest-energy state
of the fissioning system characterized by a Hamiltonian Ĥ and a set {qi} of collective
coordinates is found by the variational principle
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where N and Z are the neutron and proton numbers, respectively, and Qi is any of the re-
maining collective-coordinate values. These collective-coordinate values are calculated
as the expectation value of corresponding operators N̂, Ẑ, and Q̂i. The Q̂i are typically
multipole operators, but we have also used the neck-size constraint

Q̂N ≡ exp
[

−
(z− zN)2

a2
N

]

where z is measured along the symmetry axis of the nucleus, zN is the position of the
neck (i.e., where the neck is thinnest), and aN = 1fm2. The many-body Hamiltonian Ĥ
is expressed in terms of an effective finite-range density-dependent interaction between
the nucleons with the D1S parameterization [6]. The D1S parameters were adjusted
to properties of 16O, 90Zr, Sn isotopes, and infinite nuclear matter. The only fission-
related constraint on the interaction was introduced through a slight readjustment of the
surface-energy term in nuclear matter to better reproduce the height of the fission barrier
in 240Pu.

We have implemented the constrained HFB formalism with finite-range effective
interaction in a code that uses a one-center axially deformed harmonic-oscillator basis.
In this work we assume axial symmetry, and the Hamiltonian matrix assumes a block-
diagonal form, with the blocks labeled by the angular-momentum projection quantum
number Ω. The present calculations have been performed with up to 27 harmonic-
oscillator shells in the axial direction. The two-body center-of-mass correction has
been included. The Slater approximation has been used for the Coulomb-exchange
interaction. Only the central part of the effective interaction has been included in the
pairing interaction.

RESULTS

In this work, we have explored two distinct criteria for the definition of scission. The first
definition is based on the value of QN , the second on the interaction energy between the
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Figure 1. Scission line for 240Pu hot fission obtained in this work. The solid green points represent HFB
calculations producing a whole (non-scissioned) nuclear density. The empty red circles connected by a
solid line represent scissioned configurations.

fragments. The scission configurations identified with a QN-based criterion are shown
in Fig. 1 for 240Pu fission.

The figure shows lines of HFB calculations at fixed Q20 or Q30 values, each using the
previous solution as a starting point. The scission line was identified by a drop in QN to
relatively small values (i.e., QN � 0.5) along a given line of calculations. The scission
configurations identified in this manner correspond to the “hot fission” mode [1]. In this
mode, the fragments are formed relatively far apart and therefore with comparatively
reduced kinetic energies, and correspondingly higher excitation energies. This fission
mode is expected to dominate low-energy induced fission, such as in the 239Pu

(

nth, f
)

reaction.
The scission line obtained in Fig. 1 represents a non-trivial boundary separating re-

gions where the nucleus is either whole or scissioned. Similarly-complicated bound-
aries have been previously observed by Dubray et al. [4] in their studies of Th and
Fm fission. The behavior of the nucleus as it crosses the scission line is different near
mass-symmetric (Q30 = 0) and most probable (Q30 = 60b3/2) fission limits. Near the
symmetric limit, the variation in calculated properties (neck size, total HFB, energy,
etc.) between points just before and just after the scission line is far greater than in the
asymmetric case. These large variations make it impossible to extract the properties of
the fragments at scission using the quadrupole and octupole constraints alone. Other
constraints can be introduced, such as the hexadecapole moment Q40 and the neck pa-
rameter QN . In our analysis, we have found QN to be a more effective constraint to hold
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Figure 2. Fission-fragment charge number plotted as a function of mass number obtained from HFB
calculations just before scission in Fig. 1. The UCD prediction (solid red line) is plotted for comparison.

the nucleus back from scission, but harder to control than Q40. In addition the Q40 and
QN constraints are not simply related: for a given Q40 value, it is possible to find distinct
configurations with either a significant neck or a vanishing one [7]. For the results shown
in this paper, we have used the QN constraint to approach the scission configurations in a
more controlled manner. In the future, we plan to use both QN and the distance between
fragments to analyze the detailed behavior of the nucleus near scission.

Using the value of QN as an indicator of scission, we have examined the shape
properties of the nascent fragments at a point close to scission but such that the nucleus
is still whole. In practice, these properties were extracted at the last (green) point along
each line of calculations in Fig. 1 before the (red) scission line. In Fig. 2, we show
the HFB calculations of the charge and mass numbers of the fragments at the last pre-
scission point, compared to the prediction of the Unchanged Charge Distribution (UCD)
model [5]. These particle numbers were obtained by integrating the proton and neutron
densities to the left and right of the neck position zN along the symmetry axis of the
nucleus. The HFB and UCD predictions are in excellent agreement. This result is even
more remarkable when one realizes that the only phenomenological ingredient in the
HFB calculation, i.e. the effective interaction, was not explicitly adjusted to reproduce
this property. Similarly, the quadrupole moment of the fragments has been extracted
from the HFB calculations and, although the calculations exhibit some fluctuations, a
trend emerges. As expected, the Q20 values drop significantly near the A = 134 mass,
which is dominated by the near-spherical 134Te fragment.

Despite its usefulness, the QN criterion for scission does present some difficulties in its



interpretation. As note before, the properties of the nucleus immediately before and after
scission generally differ greatly, especially in the case of symmetric fission. Therefore, it
is not clear that the kinetic and excitation energies of the fragments, which are extremely
sensitive to the value of QN , can be correctly reproduced when adopting a criterion based
on neck size. The difficulty arises because there is no objective quantitative criterion for
the neck size at scission. As an alternative, we consider a definition of scission based
on the interaction energy between the fragments. In order to formulate a quantitative
criterion we adopt the ansatz that, in the present static calculations with constrained QN ,
scission occurs with decreasing QN as soon as there is enough energy available in the
system to overcome the attractive part of the interaction between the fragments.

For each final (green) pre-scission point in Fig. 1, the QN value is progressively de-
creased in small increments (typically ∆QN = 0.05). For each HFB calculation at con-
strained QN value, the single-particle wave functions are classified as either predom-
inantly localized to the left or to the right of the neck position zN . At this stage, the
total particle densities for the left and right fragments can be readily calculated from
their respective single-particle wave functions. The density for each fragment will typi-
cally exhibit a tail that extends into the complementary fragment. Often these tails can
be quite large containing from a few to over a hundred nucleons in the asymmetric-
and symmetric-fission limits, respectively. These tails can be reduced by a change in
representation before calculating the fragment properties. In practice, for each pair of
single-particle wave functions ψi and ψ j within the same symmetry block in the density
matrix, an angle θ is sought such that the number of particles in the tails of the rotated
wave functions

(

ψ ′
i

ψ ′
j

)

=

(

cosθ −sinθ
sinθ cosθ

)(

ψi
ψ j

)

is reduced. This transformation will not yield a reduction in the tails for all possible pairs
of wave functions

(

ψi,ψ j
)

, and it is only applied to those pairs where such a reduction
is achieved. All possible pair combinations are processed in this manner, and the entire
procedure is iterated to suppress the tails even further. In practice, 30 iterations were
sufficient to reach a decrease in tail size of less than 0.5% between subsequent iterations.

Working in this reduced-tail representation, it is now possible to calculate the interac-
tion energy between fragments defined as

Eint = EHFB −EHFB (L)−EHFB (R)−E(D)
coul

where EHFB is the HFB energy for the entire fissioning nucleus, EHFB (L) and EHFB (R)
are the HFB energies of the left and right fragment respectively (calculated using the
generalized densities identified for each fragment), and E (D)

coul is the direct contribution
of the Coulomb energy between the fragments. Care was taken to use the density of the
whole nucleus (and not that of the left or right fragment) when calculating the contribu-
tion to EHFB (L) and EHFB (R) from the density-dependent part of the interaction. The
direct Coulomb term was calculated by integrating the product of fragment proton den-
sities, folded with an inverse-distance potential. The energy Eint therefore contains con-
tributions from the purely-nuclear potential as well as the attractive Coulomb-exchange
term between fragments.
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Figure 3. Comparison between measured [8, 9, 10] and calculated total kinetic energies of the frag-
ments, plotted as a function of the heavy-fragment mass.

For low-energy fission, we assume that the energy available in the system is measured
from the top of the second barrier. If {q} denotes an arbitrary set of constraints, and
{qBII} the set of constraints at the second barrier, we measure the energy available in
the system as ∆E = EHFB ({q})−EHFB ({qBII}). If scission is approached by varying
a specific constraint, say the neck size QN , we then identify the scission configuration
as the first instance where ∆E = Eint . This configuration corresponds to our ansatz of
building up enough energy in the system to overcome the attractive part of the interaction
potential between the fragments.

Using this interaction-energy based criterion, we have calculated the kinetic and exci-
tation energies of the fragments for a few selected points along the scission line in Fig. 1.
In particular, we have made these calculations for the symmetric (Q30 = 0), most prob-
able (Q30 = 60b3/2), and very asymmetric (Q30 = 85b3/2) fission limits. The calculated
Total Kinetic Energies (TKE) are compared in Fig. 3 to three experimental measure-
ments [8, 9, 10]. The experimental data agree everywhere, except in the symmetric-
fission limit, where the measured TKE vary widely from ≈ 153 to 169 MeV. In the
symmetric limit, the HFB calculations give a value for the TKE that is closest to the
Nishio result, but in general, the calculated values agree with all three measurements
everywhere to better than 15%. We note in particular that the calculations reproduce the
observed decrease in TKE near the symmetric limit. This effect is directly related to the
extreme elongation (Q20 = 595b) reached by the nucleus at symmetric scission in Fig.
1.



In Fig. 4, we compare calculated and measured average neutron multiplicities ν (A)
as a function of fragment mass. In the HFB calculations, the neutron multiplicities are
obtained using the very simplistic formula

ν (A) =
Ex (A)

Bn (A)+Kn

where Ex (A) is the excitation energy of the fragment, Bn (A) is the neutron separation
energy, and Kn is the average kinetic energy of the emitted neutron (taken as Kn= 2
MeV here). The excitation energy of each fragment was calculated as the difference
between HFB energies of the system at scission (obtained in this work) and in its
ground state (taken from the AMEDEE database of ground-state HFB calculations
[11]). Because the two-body center-of-mass contribution is calculated for the fissioning
nucleus, a correction (of order ∼ 3 MeV) was applied to the excitation energy of
individual fragments to restore the appropriate center-of-mass energy for that fragment.
The neutron-multiplicity data exhibit a great deal of variability near symmetric fission, as
well as for heavy asymmetric fragments. Nevertheless, the calculations are in excellent
agreement with the data, except perhaps near the symmetric limit. The most recent data,
from Batenkov et al. [12], indicate a sharp rise up to ν ≈ 4.4 near A = 117, not far from
the ν ≈ 4.1 near A = 120 found in the present calculation. However, the remaining data
[9, 10, 13] and Wahl evaluation [5] peak at a lower value of 2.3-3.2 near A = 114, albeit
with significant experimental uncertainties. On the other hand, the dip in multiplicity
around the nearly-spherical A = 130 fragments is well reproduced by the calculations.

CONCLUSION

In this work, we have calculated fission-fragment properties for the 239Pu
(

nth, f
)

reac-
tion in a fully microscopic approach using static constrained HFB calculations with a
finite-range interaction. Near scission, we have separated the Slater-determinant HFB
solution into an anti-symmetrized product of two distinct Slater determinants, one cor-
responding to each fragment. We have introduced a quantitative criterion to identify
scission configurations based on building up a sufficient amount of available energy in
the fissioning system to overcome the attractive part of the interaction between the frag-
ments. Using this criterion, we have calculated the kinetic and excitation energies of
the fragments and found them to be in very good agreement with experimental data. In
the future, we will extend the calculations of fragment properties to more points along
the scission line in Fig. 1 and analyze the approach to scission as a function of the dis-
tance between fragments. We will also explore the impact on these properties of a full
dynamical treatment of fission, using the approach developed in [1, 3].

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.



80 100 120 140 160
Afrag

0

1

2

3

4

5

6

ν(
A

fra
g)

νavg Apalin (65)
νavg Nishio (95)
νavg Tsuchiya (00)
νavg Batenkov (04)
νavg Wahl (88)
νmax This work

Figure 4. Comparison between measured [9, 10, 12, 13] and calculated average neutron multiplicities,
plotted as a function of fragment mass.
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